o

’ UNIVERSITY OF

- WATERLOO

ERICSSON

BLACKOUT

Data-Oblivious Computation with
Blinded Capabillities

Hossam ElAtali**/, Merve GiilmezX, Thomas Nyman#*, N. Asokan*

* University of Waterloo t Ericsson Security Research * Ericsson Product Security

[1] Joint first authors

Talk in a nutshell

The 1t Half The 2" Half

Threats Side channels

Memory safety violations

Orthogonal

et G Data-oblivious execution

Combine
efficiently!

+

Blinded

Capabilities! BLACKOUT

The 15t Half — Timing side channels

Unintended outputs of a system secret value as data

; load instruction

time @

multiply instruction

e can be used to leak secrets l a
branch instruction
b
Timing side channels
« Secret-dependent branching and memory Q
access can cause observable changesto ~ ©O—*

control flow and cache state

O x.

CPU Cache A

Side-channel protection

Isolation techniques, e.g., cache partitioning
* Prevent observation of changes, e.g., from different process
* Do not prevent changes themselves.
» Attackers keep discovering new observation methods

Alternative solution: Data-oblivious code
* Prevents changes based on secret data

Data-oblivious code

Seemingly data-oblivious source code can still lead to side channels
« Compilers can introduce side channels into assembly code
« HW optimizations can cause side channels even with “correct” assembly
« Leakage occurs silently!

Defenses:

« ConstantinelBPQG*21] — compiler transformations
« Uses best-effort approach - confidentiality not guaranteed

« BliMelFGLA*24VQISAIYHEF+19] — HW taint-tracking and enforcement
« High memory tagging overheads + difficult to program correctly

[BDQG+21] “Constantine: Automatic Side-Channel Resistance Using Efficient Control and Data Flow Linearization”, ACM CCS (2021)
[EGLA+24] “BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking”, NDSS (2024)
[YHEF+19] “Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance Computing”, NDSS (2019)

https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3460120.3484583
https://www.ndss-symposium.org/ndss-paper/blime-verifiably-secure-outsourced-computation-with-hardware-enforced-taint-tracking/
https://www.ndss-symposium.org/ndss-paper/blime-verifiably-secure-outsourced-computation-with-hardware-enforced-taint-tracking/
https://www.ndss-symposium.org/ndss-paper/blime-verifiably-secure-outsourced-computation-with-hardware-enforced-taint-tracking/
https://www.ndss-symposium.org/ndss-paper/data-oblivious-isa-extensions-for-side-channel-resistant-and-high-performance-computing/
https://www.ndss-symposium.org/ndss-paper/data-oblivious-isa-extensions-for-side-channel-resistant-and-high-performance-computing/
https://www.ndss-symposium.org/ndss-paper/data-oblivious-isa-extensions-for-side-channel-resistant-and-high-performance-computing/

The 2"d Half — Memory safety violations

Memory safety violations still one of the top causes of exploits

Can lead to attacker gaining arbitrary read, write or execute privileges
Examples: out-of-bounds access, use-after-free

Defenses:

 Memory-safe language, e.g., Rust
« CHERI

Side-channel protection vs. memory safety

Current defenses for side channels and memory safety are orthogonal

Side-channel protection | __Memory safety

HW taint-tracking approaches, e.g., BliMe, OISA v
Cache partitioning v
Constantine v
Memory-safe languages, e.g., Rust v
CHERI capabilities v

Prior attempts to combine defenses have been unsuccessful
* e.g., adding side-channel protection to Rust

Side-channel protection vs memory safety

Current defenses for side channels and memory safety are orthogonal

Side-channel protection | __Memory safety

HW taint-tracking approaches, e.g., BliMe, OISA v
Cache partitioning v
Constantine v

Memory-safe languages, e.g., Rust v
CHERI capabilities v/

Goal: CHERI memory safety + BliMe-like side-channel protection
Naive BliMe+CHERI:
« doubles memory tagging — high overheads, even for non-secret workloads

Background — CHERI

Pointers to code and data replaced by “capabilities”
« Contains metadata storing bounds and permissions
 Memory tagging used to store validity bit

I } @ 1-bit Validity tag (@ Permissions @ Object type @ Bounds

(5 Baseline architecture address

Provenance and monotonicity prevent capability forgery
* Provenance: valid capabilities can only be derived from other valid ones
« Monotonicity: capabilities cannot “gain” permissions

BLACKOUT overview

HW propagates blindedness and prevents “leaky” operations, e.g.:
» Blindedness is taint that denotes secret data

Introduces blinded capabilities (BCs)
« Have exclusive access to blinded data in memory
« Data loaded with BCs is marked in registers with blindedness bit

Compiler & SW support guides developer towards data-oblivious code
« Compiler generates BCs for stack and analyzes code for leakage detection
 CheriBSD and blinded malloc clear blinded data on revocation

10

BLACKOUT hardware

Out-of-order blinded capability-enhanced RISC-V CPLT

Extend registers with BliMe-like SN
blindedness bit | Interface | Tmterface

Debug
Module

¥
Instmcnon Data
Cache Cache

HW propagates blindedness Pscitin it x[—

Fetch msmuction

Decode instrction

HW enforces data-oblivious [Braach.

! — FPU nchul Tor-Div Exccvtion Pipelne

operation on blinded operands] | (7o [wwwr] [won]
- I
 Control-flow

Fename Stage

Renmuming . Register »| Reorder Buffer H
Table | remang |
 Loads & stores
[CHERI extensions Bl BLACKOUT extensions

Adds support for blinded capabilities

11

Blinded capabilities (BCs)

Capabilities with new ‘non-oblivious access’ permission unset
* Unsetting permission means operations on data must be data-oblivious

Data loaded using BCs is marked in registers with blindedness bit
* Avoids the need to track secret data in memory
 Memory tagging not required!

BCs guaranteed to have exclusive access to blinded data in memory

BC Non-BC
v -
Blinded data Non-blinded data

12

Exclusive access

Exclusive access invariants:
1. Blinded data cannot be stored using non-BCs m) enforced by HW
2. Capabilities cannot be blinded m) enforced by HW

3. Bounds of valid BCs and non-BCs must not overlap = enforced by SW

Compiler and heap allocator ensure proper BC and non-BC bounds
« Blinded data is cleared before memory region is reused
« Compiler handles blinded local variables on stack frame pop
« Heap allocator uses CornucopialF*?%-style reclamation for blinded data

13
[F+20] “Cornucopia: Temporal Safety for CHERI Heaps”, IEEE Symposium on Security and Privacy (2020)

https://ieeexplore.ieee.org/document/9152640

BLACKOUT software stack

Application
code

Blinded capability-enhanced

Clang / LLVM
L Lexing and IR Generation LLVM
Developer parsing optimizer

Target
backend

Blinded capability-enhanced
CheriBSD

7y Blinded capability-enhanced

Annotated Instrumented
LLVM IR LLVM IR

Annotate using
@ blinded
attributes

Use blinded
allocator API

Emit blinded Blinded capability Blinded capability
(4 attributes to IR (5) analysis (6) Instrumentation

Annotated

data-oblivious

(3 code

f

application

Blinded
8/ allocator

© Blinded capability-enhanced
CheriBSD kernel

14

BC-enhanced compiler

Creates BCs to load/store variables annotated with ‘blinded’ attribute

define [[clang :: annotate_type (" blinded ")]]

int a;

Clears blinded data on stack frame pop

Analysis pass:
 tracks blinded data flows
 issues error when confident of exclusive access or side-channel violation
* enables early detection of bugs that would otherwise cause HW faults

15

Example 1

1| #define _ _blinded [[clang::annotate_type("blinded")]]
2|

3| @ __attribute__ ((blinded))

4|int data_oblivious_select(bool cond, int x, int y) {

a| bool __blinded c¢; // ¢ declared blinded and
- // accessed via blinded capability

9| int res; // res not declared blinded

10| // but blindedness is inferred
11 | ® Compiler infers res blinded from &

12

HI c = cond; // Uses store via blinded capability
14| // (argument already in register)

15 | @ Compiler knows c is already blinded based on declaration

17| { res = (x * ¢c) + (y *x (1c)); // HW propagates

18 | [// blindedness to res
19 | ® Compiler infers res is blinded from this assignment

21 | return res;

16

Performance Evaluation

Implemented on RISC-V CHERI Toooba core

Overhead (%)

Benchmark i =
No overhead for unblinded workloads binary_search 55 521
dnn 20.1 20.2
find max 23.0 255
1.5% geomean vs. CHERI for blinded workloads Ak sl e
matrix_mult 97 11.1
. . B baseline
Vanilla CHERI overheads due to missing LLVM support: purecap
+ High initial startup times W purecapblinded

* Missing loop optimizations

« Baremetal experiments show much lower overheads (9.1% vs. 52.1%)

17

Security Evaluation

Security guarantees inherited from CHERI and BliMe

Spectre
« Vanilla CHERI-Toooba vulnerable to Spectre-BTB, -RSB and -STLIF*21]
« BLACKOUT successfully stops all Spectre attacks

Non-interference
« Data-oblivious execution inherently provides non-interference
» Verified empirically through prior work methodology — Libral"*24

[F+21] "Developing a test suite for transient-execution attacks on RISC-V and CHERI-RISC-V." Computer Architecture with RISC-V workshop (CARRYV). 2021.

[F+24] "Libra: Architectural Support for Principled, Secure and Efficient Balanced Execution on High-End Processors," in ACM CCS (2024).

18

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://dl.acm.org/doi/10.1145/3658644.3690319
https://dl.acm.org/doi/10.1145/3658644.3690319
https://dl.acm.org/doi/10.1145/3658644.3690319

Conclusion

(=] [y (2]

Combines CHERI memory safety with BliMe-like side-channel protection

Introduces blinded capabilities to access blinded data in memory E o
* No additional memory tagging required blindedeapabilities.github.io

HW propagates blindedness and stops “leaky” operations on blinded data
Incurs minimal performance, area and power overheads vs. baseline CHERI

Inherits security guarantees from CHERI and BliMe
« Evaluation demonstrates non-interference & protection against Spectre

19
[EGNA25] “BLACKOUT: Data-Oblivious Computation with Blinded Capabilities”, ACM CCS (2025) (also on arXiv)

blindedcapabilities.github.io
https://doi.org/10.1145/3719027.3765169
https://doi.org/10.1145/3719027.3765169
https://doi.org/10.1145/3719027.3765169
https://doi.org/10.48550/arXiv.2504.14654

20

Example

1| void bad_func(bool cond, int x, int xout) {
2|
3 { int __blinded a = x; // a declared blinded

a int b;

21

Area & power overheads

logic A(%) memory A(%) registers A(%) power A(%)
CHERI-Toooba Core 697508 - 20852 - 412493 - 6.205 -
Blinded CHERI-Toooba Core 705863 1.2 20855 0.0 412913 0.1 6.536 5.3

Low overheads result of minimal changes to CHERI Toooba

Overheads caused by:
« Taint-tracking logic
 Violation-checking logic
« Extension of registers with blindedness bit

22

	Slide 1: BLACKOUT Data-Oblivious Computation with Blinded Capabilities
	Slide 2: Talk in a nutshell
	Slide 3: The 1st Half – Timing side channels
	Slide 4: Side-channel protection
	Slide 5: Data-oblivious code
	Slide 6: The 2nd Half – Memory safety violations
	Slide 7: Side-channel protection vs. memory safety
	Slide 8: Side-channel protection vs memory safety
	Slide 9: Background – CHERI
	Slide 10: BLACKOUT overview
	Slide 11: BLACKOUT hardware
	Slide 12: Blinded capabilities (BCs)
	Slide 13: Exclusive access
	Slide 14: BLACKOUT software stack
	Slide 15: BC-enhanced compiler
	Slide 16: Example 1
	Slide 17: Performance Evaluation
	Slide 18: Security Evaluation
	Slide 19: Conclusion
	Slide 20
	Slide 21: Example
	Slide 22: Area & power overheads

