
BLACKOUT
Data-Oblivious Computation with
Blinded Capabilities

Hossam ElAtali*[1], Merve Gülmez†[1], Thomas Nyman‡, N. Asokan*

* University of Waterloo † Ericsson Security Research ‡ Ericsson Product Security

[1] Joint first authors

2

Talk in a nutshell

Memory safety violationsSide channelsThreats

Orthogonal

Defenses

Combine

efficiently!

Data-oblivious execution CHERI

BLACKOUT
Blinded

Capabilities!

The 1st Half The 2nd Half

3

The 1st Half – Timing side channels

Unintended outputs of a system

• can be used to leak secrets

Timing side channels

• Secret-dependent branching and memory

access can cause observable changes to

control flow and cache state

4

Side-channel protection

Isolation techniques, e.g., cache partitioning

• Prevent observation of changes, e.g., from different process

• Do not prevent changes themselves.

• Attackers keep discovering new observation methods

Alternative solution: Data-oblivious code

• Prevents changes based on secret data

5

Data-oblivious code

Seemingly data-oblivious source code can still lead to side channels

• Compilers can introduce side channels into assembly code

• HW optimizations can cause side channels even with “correct” assembly

• Leakage occurs silently!

Defenses:

• Constantine[BDQG+21] – compiler transformations

• Uses best-effort approach → confidentiality not guaranteed

• BliMe[EGLA+24]/OISA[YHEF+19] – HW taint-tracking and enforcement

• High memory tagging overheads + difficult to program correctly

[BDQG+21] “Constantine: Automatic Side-Channel Resistance Using Efficient Control and Data Flow Linearization”, ACM CCS (2021)

[EGLA+24] “BliMe: Verifiably Secure Outsourced Computation with Hardware-Enforced Taint Tracking”, NDSS (2024)

[YHEF+19] “Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance Computing”, NDSS (2019)

https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3460120.3484583
https://www.ndss-symposium.org/ndss-paper/blime-verifiably-secure-outsourced-computation-with-hardware-enforced-taint-tracking/
https://www.ndss-symposium.org/ndss-paper/blime-verifiably-secure-outsourced-computation-with-hardware-enforced-taint-tracking/
https://www.ndss-symposium.org/ndss-paper/blime-verifiably-secure-outsourced-computation-with-hardware-enforced-taint-tracking/
https://www.ndss-symposium.org/ndss-paper/data-oblivious-isa-extensions-for-side-channel-resistant-and-high-performance-computing/
https://www.ndss-symposium.org/ndss-paper/data-oblivious-isa-extensions-for-side-channel-resistant-and-high-performance-computing/
https://www.ndss-symposium.org/ndss-paper/data-oblivious-isa-extensions-for-side-channel-resistant-and-high-performance-computing/

6

The 2nd Half – Memory safety violations

Memory safety violations still one of the top causes of exploits

Can lead to attacker gaining arbitrary read, write or execute privileges

Examples: out-of-bounds access, use-after-free

Defenses:

• Memory-safe language, e.g., Rust

• CHERI

7

Current defenses for side channels and memory safety are orthogonal

Prior attempts to combine defenses have been unsuccessful

• e.g., adding side-channel protection to Rust

Side-channel protection vs. memory safety

Defense Side-channel protection Memory safety

HW taint-tracking approaches, e.g., BliMe, OISA

Cache partitioning

Constantine

Memory-safe languages, e.g., Rust

CHERI capabilities

8

Side-channel protection vs memory safety

Current defenses for side channels and memory safety are orthogonal

Goal: CHERI memory safety + BliMe-like side-channel protection

Naïve BliMe+CHERI:

• doubles memory tagging → high overheads, even for non-secret workloads

Defense Side-channel protection Memory safety

HW taint-tracking approaches, e.g., BliMe, OISA

Cache partitioning

Constantine

Memory-safe languages, e.g., Rust

CHERI capabilities

BLACKOUT

9

Background – CHERI

Pointers to code and data replaced by “capabilities”

• Contains metadata storing bounds and permissions

• Memory tagging used to store validity bit

Provenance and monotonicity prevent capability forgery

• Provenance: valid capabilities can only be derived from other valid ones

• Monotonicity: capabilities cannot “gain” permissions

10

BLACKOUT overview

HW propagates blindedness and prevents “leaky” operations, e.g.:

• Blindedness is taint that denotes secret data

Introduces blinded capabilities (BCs)

• Have exclusive access to blinded data in memory

• Data loaded with BCs is marked in registers with blindedness bit

Compiler & SW support guides developer towards data-oblivious code

• Compiler generates BCs for stack and analyzes code for leakage detection

• CheriBSD and blinded malloc clear blinded data on revocation

11

BLACKOUT hardware

Extend registers with BliMe-like

blindedness bit

HW propagates blindedness

HW enforces data-oblivious

operation on blinded operands

• Control-flow

• Loads & stores

Adds support for blinded capabilities

CHERI extensions BLACKOUT extensions

12

Blinded capabilities (BCs)

Capabilities with new ‘non-oblivious access’ permission unset

• Unsetting permission means operations on data must be data-oblivious

Data loaded using BCs is marked in registers with blindedness bit

• Avoids the need to track secret data in memory

• Memory tagging not required!

BCs guaranteed to have exclusive access to blinded data in memory

Blinded data Non-blinded data

Non-BCBC

13

Exclusive access

Exclusive access invariants:

1. Blinded data cannot be stored using non-BCs

2. Capabilities cannot be blinded

3. Bounds of valid BCs and non-BCs must not overlap

enforced by HW

enforced by HW

enforced by SW

Compiler and heap allocator ensure proper BC and non-BC bounds

• Blinded data is cleared before memory region is reused

• Compiler handles blinded local variables on stack frame pop

• Heap allocator uses Cornucopia[F+20]-style reclamation for blinded data

[F+20] “Cornucopia: Temporal Safety for CHERI Heaps”, IEEE Symposium on Security and Privacy (2020)

https://ieeexplore.ieee.org/document/9152640

14

BLACKOUT software stack

15

BC-enhanced compiler

Creates BCs to load/store variables annotated with ‘blinded’ attribute

Clears blinded data on stack frame pop

Analysis pass:

• tracks blinded data flows

• issues error when confident of exclusive access or side-channel violation

• enables early detection of bugs that would otherwise cause HW faults

define __blinded [[clang :: annotate_type (" blinded ")]]

int __blinded a;

16

Example 1

17

Performance Evaluation

Implemented on RISC-V CHERI Toooba core

No overhead for unblinded workloads

1.5% geomean vs. CHERI for blinded workloads

Vanilla CHERI overheads due to missing LLVM support:

• High initial startup times

• Missing loop optimizations

• Baremetal experiments show much lower overheads (9.1% vs. 52.1%)

baseline

purecap

purecap+blinded

18

Security Evaluation

Security guarantees inherited from CHERI and BliMe

Spectre

• Vanilla CHERI-Toooba vulnerable to Spectre-BTB, -RSB and -STL[F+21]

• BLACKOUT successfully stops all Spectre attacks

Non-interference

• Data-oblivious execution inherently provides non-interference

• Verified empirically through prior work methodology – Libra[F+24]

[F+21] "Developing a test suite for transient-execution attacks on RISC-V and CHERI-RISC-V." Computer Architecture with RISC-V workshop (CARRV). 2021.

[F+24] "Libra: Architectural Support for Principled, Secure and Efficient Balanced Execution on High-End Processors," in ACM CCS (2024).

https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/202106-carrv-transient-execution.pdf
https://dl.acm.org/doi/10.1145/3658644.3690319
https://dl.acm.org/doi/10.1145/3658644.3690319
https://dl.acm.org/doi/10.1145/3658644.3690319

19

Conclusion

Combines CHERI memory safety with BliMe-like side-channel protection

Introduces blinded capabilities to access blinded data in memory

• No additional memory tagging required

HW propagates blindedness and stops “leaky” operations on blinded data

Incurs minimal performance, area and power overheads vs. baseline CHERI

Inherits security guarantees from CHERI and BliMe

• Evaluation demonstrates non-interference & protection against Spectre

blindedcapabilities.github.io

[EGNA25] “BLACKOUT: Data-Oblivious Computation with Blinded Capabilities”, ACM CCS (2025) (also on arXiv)

blindedcapabilities.github.io
https://doi.org/10.1145/3719027.3765169
https://doi.org/10.1145/3719027.3765169
https://doi.org/10.1145/3719027.3765169
https://doi.org/10.48550/arXiv.2504.14654

20

21

Example

22

Area & power overheads

Low overheads result of minimal changes to CHERI Toooba

Overheads caused by:

• Taint-tracking logic

• Violation-checking logic

• Extension of registers with blindedness bit

	Slide 1: BLACKOUT Data-Oblivious Computation with Blinded Capabilities
	Slide 2: Talk in a nutshell
	Slide 3: The 1st Half – Timing side channels
	Slide 4: Side-channel protection
	Slide 5: Data-oblivious code
	Slide 6: The 2nd Half – Memory safety violations
	Slide 7: Side-channel protection vs. memory safety
	Slide 8: Side-channel protection vs memory safety
	Slide 9: Background – CHERI
	Slide 10: BLACKOUT overview
	Slide 11: BLACKOUT hardware
	Slide 12: Blinded capabilities (BCs)
	Slide 13: Exclusive access
	Slide 14: BLACKOUT software stack
	Slide 15: BC-enhanced compiler
	Slide 16: Example 1
	Slide 17: Performance Evaluation
	Slide 18: Security Evaluation
	Slide 19: Conclusion
	Slide 20
	Slide 21: Example
	Slide 22: Area & power overheads

